Materi Matematika : Rumus Trigonometri Sinus Kosinus Tangen

Rumus Trigonometri Sinus Kosinus Tangen | Selamat datang para pecinta Matematrick. Kali ini kita akan belajar tentang materi favorit saya waktu di sekolah, yaitu Materi matematika bab trigonometri.

Inti dari trigonometri adalah mempelajari tentang panjang sisi dan besar sudut dalam segitiga.
Munculnya istilah sinus, cosinus dan tangen pun sebenarnya adalah istilah untuk menyatakan perbandingan-perbandingan antar panjang sisi segitiga.

Lebih lengkapnya tentang pendahuluan trigonometri bisa anda pelajari di sini:
Materi matematika trigonometri

Berikut ini adalah materi trigonometri lanjutan, sambungan dari materi sebelumnya, yaitu Rumus/Aturan Sinus dan Cosinus


A. Rumus Trigonometri Sudut Ganda

1. Rumus Sinus Sudut Ganda
Dengan memanfaatkan rumus sin (A + B), untuk A = B akan diperoleh:
sin 2A = sin (A + B)
           = sin A cos A + cos A sin A
           = 2 sin A cos A

Sehingga didapat Rumus: 
sin 2A = 2 sin A cos A

Untuk lebih jelasnya, perhatikan contoh soal berikut ini.

Contoh soal trigonometri dasar

Diketahui sin A = 12/13 , di mana A di kuadran II. Dengan menggunakan rumus sudut ganda, hitunglah sin 2A.

Penyelesaian:

b. Rumus Cosinus Sudut Ganda
Dengan memanfaatkan rumus cos (A + B), untuk A = B akan diperoleh:
cos 2A = cos (A + A)
            = cos A cos A – sin A sin A
            = cos² A – sin² A ……………..(1)
atau

cos 2A = cos² A – sin² A
            = cos² A – (1 – cos² A)
            = cos² A – 1 + cos² A
            = 2 cos² A – 1 ……………..(2)
atau

cos 2A = cos² A – sin² A
            = (1 – sin² A) – sin² A
            = 1 – 2 sin² A …………(3)

Dari persamaan (1), (2), dan (3) didapat rumus sebagai berikut
cos 2A = cos² A – sin² A
cos 2A = 2 cos² A – 1
cos 2A = 1 – 2 sin² A

contoh soal persamaan trigonometri sederhana

Diketahui cos A = – 7/25 , di mana A dikuadran III. Dengan menggunakan rumus sudut ganda, hitunglah nilai cos 2A.

Penyelesaian:

c. Rumus Tangen Sudut Ganda
Dengan memanfaatkan rumus tan (A + B), untuk A = B akan diperoleh:

tan 2A = tan (A + A)
            = (tan A + tan A)/(1 - tan A.tan A)
            = (2 tan A)/(1 - tan² A)
Rumus:

tan 2A = (2 tan A)/(1 - tan² A)

Perhatikan contoh soal berikut ini.

contoh soal persamaan trigonometri

Jika α sudut lancip dan sin α = 4/5 , hitunglah tan 2α.

Penyelesaian:

B. Rumus Perkalian Sinus dan Kosinus

1. Perkalian Cosinus dan Cosinus
Dari rumus jumlah dan selisih dua sudut, dapat diperoleh rumus sebagai berikut

cos (A + B) = cos A cos B – sin A sin B ......... (1)
cos (A – B) = cos A cos B + sin A sin B ......... (2)
tambahkan persamaan (1) dan (2) maka akan didapat :
cos (A + B) + cos (A – B) = 2 cos A cos B

Rumus:

2 cos A cos B = cos (A + B) + cos (A – B)
Pelajarilah contoh soal berikut untuk lebih memahami rumus perkalian cosinus dan cosinus.

Contoh soal perkalian trigonometri :

Nyatakan 2 cos 75° cos 15° ke dalam bentuk jumlah atau selisih, kemudian tentukan hasilnya.

Penyelesaian:
2 cos 75° cos 15° = cos (75 + 15)° + cos (75 – 15)°
                             = cos 90° + cos 60°
                             = 0 + 0,5
                             = 0,5

2. Perkalian Sinus dan Sinus
Dari rumus jumlah dan selisih dua sudut, dapat diperoleh rumus sebagai berikut:

cos (A + B) = cos A cos B – sin A sin B ............ (1)
cos (A – B) = cos A cos B + sin A sin B .............(2)
Kedua ruas dikurangkan, akan didapat :
cos (A + B) – cos (A –B) = –2 sin A sin B atau
2 sin A sin B = cos (A – B) – cos (A + B)

Rumus:
2 sin A sin B = cos (A – B) – cos (A + B)

Sekarang, simaklah contoh soal berikut.

Contoh soal persamaan trigonometri sederhana :

Tentukan nilai x dari persamaan trigonometri berikut :
2 sin 75 sin 15 = x.
Penyelesaian:
2 sin 75 sin 15 = cos (75 – 15) – cos (75 + 15)
                        = cos 60 – cos 90
                        = 0,5 – 0
                        = 0,5
Jadi nilai x = 0,5.

3. Perkalian Sinus dan Cosinus
Dari rumus jumlah dan selisih dua sudut, dapat diperoleh rumus sebagai berikut.
sin (A + B) = sin A cos B + cos A sin B ............ (1)
sin (A – B) = sin A cos B – cos A sin B ............ (2)
dari persamaan (1) dan (2) dijumlahkan akan didapat :
sin (A + B) + sin (A – B) = 2 sin A cos B atau
2 sin A cos B = sin (A + B) + sin (A – B)

Rumus:

2 sin A cos B = sin (A + B) + sin (A – B)
Perhatikan contoh soal berikut :

Contoh soal perkalian trigonometri sederhana:

Nyatakan sin 105° cos 15° ke dalam bentuk jumlah atau selisih sinus, kemudian tentukan hasilnya.

Penyelesaian:

C. Rumus Jumlah dan Selisih pada Sinus dan Kosinus
1. Rumus Penjumlahan Cosinus
Berdasarkan rumus perkalian cosinus, diperoleh hubungan penjumlahan dalam cosinus yaitu sebagai berikut.

2 cos A cos B = cos (A + B) + cos (A – B)

Misalkan

Selanjutnya, kedua persamaan itu disubstitusikan.

2 cos A cos B = cos (A + B) + cos (A – B)
2 cos 1/2 (α + β) cos 1/2 (α – β) = cos α + cos β
atau

Perhatikan contoh soal berikut.

Contoh soal:

Sederhanakan: cos 100° + cos 20°.

Penyelesaian:
cos 100° + cos 20° = 2 cos 1/2(100 + 20)° cos 1/2(100 – 20)°
                               = 2 cos 60° cos 40°
                               = 2 ⋅ 1/2 cos 40°
                               = cos 40°

2. Rumus Pengurangan Cosinus
Dari rumus 2 sin A sin B = cos (A – B) – cos (A + B), dengan memisalkan
A + B = α dan A – B = β, terdapat rumus:

Perhatikan contoh soal berikut.

Contoh soal:
Sederhanakan cos 35° – cos 25°.

Penyelesaian:
cos 35° – cos 25° = –2 sin 1/2 (35 + 25)° sin 1/2 (35 – 25)°
                             = –2 sin 30° sin 5°
                             = –2 ⋅ 1/2 sin 5°
                             = – sin 5°

3. Rumus Penjumlahan dan Pengurangan Sinus
Dari rumus 2 sin A cos B = sin (A + B) + sin (A – B), dengan memisalkan
A + B = α dan A – B = β, maka didapat rumus:

Agar lebih memahami tentang penjumlahan dan pengurangan sinus, pelajarilah penggunaannya dalam contoh soal berikut.

Contoh soal:
Sederhanakan sin 315° – sin 15°.

Penyelesaian:
sin 315° – sin 15° = 2⋅ cos 1/2 (315 + 15)° ⋅ sin 1/2 (315 – 15)°
                             = 2⋅ cos 165° ⋅ sin 150°
                             = 2⋅ cos 165 ⋅ 1/2
                             = cos 165°

4. Rumus Penjumlahan dan Pengurangan Tangen

Perhatikan penggunaan rumus penjumlahan pada contoh soal berikut.

Contoh soal:
Tentukan nilai tan 165° + tan 75°

Penyelesaian:

Dapatkan artikel terbaru:

3 Responses to "Materi Matematika : Rumus Trigonometri Sinus Kosinus Tangen"

  1. Bagaimana dengan tan(A-B), cot(A±B), Csc(A±B), Sec(A±B) gan?

    ReplyDelete
  2. Bagaimana dengan tan(A-B), cot(A±B), Csc(A±B), Sec(A±B) gan?

    ReplyDelete

Manfaatkan kotak komentar di bawah ini untuk feed back dan sumbang saran. Terima kasih sudah ikut berkontribusi di blog Matematrick.